Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HetConv: Heterogeneous Kernel-Based Convolutions for Deep CNNs (1903.04120v2)

Published 11 Mar 2019 in cs.CV, cs.AI, and cs.LG

Abstract: We present a novel deep learning architecture in which the convolution operation leverages heterogeneous kernels. The proposed HetConv (Heterogeneous Kernel-Based Convolution) reduces the computation (FLOPs) and the number of parameters as compared to standard convolution operation while still maintaining representational efficiency. To show the effectiveness of our proposed convolution, we present extensive experimental results on the standard convolutional neural network (CNN) architectures such as VGG \cite{vgg2014very} and ResNet \cite{resnet}. We find that after replacing the standard convolutional filters in these architectures with our proposed HetConv filters, we achieve 3X to 8X FLOPs based improvement in speed while still maintaining (and sometimes improving) the accuracy. We also compare our proposed convolutions with group/depth wise convolutions and show that it achieves more FLOPs reduction with significantly higher accuracy.

Citations (87)

Summary

We haven't generated a summary for this paper yet.