Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient Descent based Optimization Algorithms for Deep Learning Models Training (1903.03614v1)

Published 11 Mar 2019 in cs.LG, cs.AI, and stat.ML

Abstract: In this paper, we aim at providing an introduction to the gradient descent based optimization algorithms for learning deep neural network models. Deep learning models involving multiple nonlinear projection layers are very challenging to train. Nowadays, most of the deep learning model training still relies on the back propagation algorithm actually. In back propagation, the model variables will be updated iteratively until convergence with gradient descent based optimization algorithms. Besides the conventional vanilla gradient descent algorithm, many gradient descent variants have also been proposed in recent years to improve the learning performance, including Momentum, Adagrad, Adam, Gadam, etc., which will all be introduced in this paper respectively.

Citations (51)

Summary

We haven't generated a summary for this paper yet.