Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Gaussian fluctuations for the stochastic heat equation with colored noise (1903.02509v2)

Published 6 Mar 2019 in math.PR

Abstract: In this paper, we present a quantitative central limit theorem for the d-dimensional stochastic heat equation driven by a Gaussian multiplicative noise, which is white in time and has a spatial covariance given by the Riesz kernel. We show that the spatial average of the solution over an Euclidean ball is close to a Gaussian distribution, when the radius of the ball tends to infinity. Our central limit theorem is described in the total variation distance, using Malliavin calculus and Stein's method. We also provide a functional central limit theorem.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.