Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Widely Linear Complex-valued Autoencoder: Dealing with Noncircularity in Generative-Discriminative Models (1903.02014v1)

Published 5 Mar 2019 in cs.NE

Abstract: We propose a new structure for the complex-valued autoencoder by introducing additional degrees of freedom into its design through a widely linear (WL) transform. The corresponding widely linear backpropagation algorithm is also developed using the $\mathbb{CR}$ calculus, to unify the gradient calculation of the cost function and the underlying WL model. More specifically, all the existing complex-valued autoencoders employ the strictly linear transform, which is optimal only when the complex-valued outputs of each network layer are independent of the conjugate of the inputs. In addition, the widely linear model which underpins our work allows us to consider all the second-order statistics of inputs. This provides more freedom in the design and enhanced optimization opportunities, as compared to the state-of-the-art. Furthermore, we show that the most widely adopted cost function, i.e., the mean squared error, is not best suited for the complex domain, as it is a real quantity with a single degree of freedom, while both the phase and the amplitude information need to be optimized. To resolve this issue, we design a new cost function, which is capable of controlling the balance between the phase and the amplitude contribution to the solution. The experimental results verify the superior performance of the proposed autoencoder together with the new cost function, especially for the imaging scenarios where the phase preserves extensive information on edges and shapes.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zeyang Yu (7 papers)
  2. Shengxi Li (23 papers)
  3. Danilo Mandic (57 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.