Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Widely Linear Matched Filter: A Lynchpin towards the Interpretability of Complex-valued CNNs (2401.16729v2)

Published 30 Jan 2024 in cs.LG

Abstract: A recent study on the interpretability of real-valued convolutional neural networks (CNNs) {Stankovic_Mandic_2023CNN} has revealed a direct and physically meaningful link with the task of finding features in data through matched filters. However, applying this paradigm to illuminate the interpretability of complex-valued CNNs meets a formidable obstacle: the extension of matched filtering to a general class of noncircular complex-valued data, referred to here as the widely linear matched filter (WLMF), has been only implicit in the literature. To this end, to establish the interpretability of the operation of complex-valued CNNs, we introduce a general WLMF paradigm, provide its solution and undertake analysis of its performance. For rigor, our WLMF solution is derived without imposing any assumption on the probability density of noise. The theoretical advantages of the WLMF over its standard strictly linear counterpart (SLMF) are provided in terms of their output signal-to-noise-ratios (SNRs), with WLMF consistently exhibiting enhanced SNR. Moreover, the lower bound on the SNR gain of WLMF is derived, together with condition to attain this bound. This serves to revisit the convolution-activation-pooling chain in complex-valued CNNs through the lens of matched filtering, which reveals the potential of WLMFs to provide physical interpretability and enhance explainability of general complex-valued CNNs. Simulations demonstrate the agreement between the theoretical and numerical results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. L. Stanković and D. Mandic, “Convolutional neural networks demystified: A matched filtering perspective-based tutorial,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 53, no. 6, p. 3614–3628, Jun. 2023.
  2. T. Chiheb, O. Bilaniuk, D. Serdyuk et al., “Deep complex networks,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2017.
  3. J. Kang, D. Hong, J. Liu, G. Baier, N. Yokoya, and B. Demir, “Learning convolutional sparse coding on complex domain for interferometric phase restoration,” IEEE Trans. Neural Networks Learn. Syst., p. 1–15, 2020.
  4. K. Tachibana and K. Otsuka, “Wind prediction performance of complex neural network with ReLU activation function,” in Proc. Annu. Conf. Soc. Instrum. Control Eng. Jpn. (SICE).   IEEE, 2018, pp. 1029–1034.
  5. F.-L. Fan, J. Xiong, M. Li, and G. Wang, “On interpretability of artificial neural networks: A survey,” IEEE Trans. Radiat. Plasma Med. Sci., vol. 5, no. 6, pp. 741–760, Nov. 2021.
  6. L. Stanković and D. P. Mandic, “Understanding the basis of graph convolutional neural networks via an intuitive matched filtering approach [Lecture Notes],” IEEE Signal Process. Mag., vol. 40, no. 2, p. 155–165, Mar. 2023.
  7. G. Turin, “An introduction to matched filters,” IRE Trans. Inf. Theory, vol. 6, no. 3, pp. 311–329, 1960.
  8. ——, “An introduction to digitial matched filters,” Proc. IEEE, vol. 64, no. 7, p. 1092–1112, 1976.
  9. C. B. Ahn, Y. Song, and D.-J. Park, “Adaptive template filtering for signal-to-noise ratio enhancement in magnetic resonance imaging,” IEEE Trans. Med. Imaging., vol. 18, no. 6, pp. 549–556, Jun. 1999.
  10. E. Arias-Castro and L. Zheng, “Template matching and change point detection by m-estimation,” IEEE Trans. Inf. Theory, vol. 68, no. 1, p. 423–447, Jan. 2022.
  11. M. Joham, W. Utschick, and J. A. Nossek, “Linear transmit processing in MIMO communications systems,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 2700–2712, Aug. 2005.
  12. S. Yang and L. Hanzo, “Fifty years of MIMO detection: The road to large-scale MIMOs,” IEEE Commun. Surv. Tutorials, vol. 17, no. 4, p. 1941–1988, 2015.
  13. Y. Hama and H. Ochiai, “Performance analysis of matched-filter detector for MIMO spatial multiplexing over rayleigh fading channels with imperfect channel estimation,” IEEE Trans. Commun., vol. 67, no. 5, pp. 3220–3233, 2019.
  14. L. Scharf and B. Friedlander, “Matched subspace detectors,” IEEE Trans. Signal Process., vol. 42, no. 8, p. 2146–2157, Aug. 1994.
  15. A. Kammoun, R. Couillet, F. Pascal, and M.-S. Alouini, “Optimal design of the adaptive normalized matched filter detector using regularized Tyler estimators,” IEEE Trans. Aerosp. Electron. Syst., vol. 54, no. 2, p. 755–769, Apr. 2018.
  16. Z. Ghasemi and M. Derakhtian, “Performance analysis of the matched subspace detector in the presence of signal-dependent interference for MIMO radar,” Signal Process., vol. 176, p. 107709, 2020.
  17. M. Neinavaie, J. Khalife, and Z. M. Kassas, “Cognitive opportunistic navigation in private networks With 5G signals and beyond,” IEEE J. Sel. Top. Signal Process., vol. 16, no. 1, p. 129–143, Jan. 2022.
  18. B. Picinbono, “On deflection as a performance criterion in detection,” IEEE Trans. Aerosp. Electron. Syst., vol. 31, no. 3, p. 1072–1081, Jul. 1995.
  19. P. Schreier, L. Scharf, and C. Mullis, “Detection and estimation of improper complex random signals,” IEEE Trans. Inf. Theory, vol. 51, no. 1, p. 306–312, Jan. 2005.
  20. J. Cavassilas, “Stochastic matched filter,” Proc. Inst. Acoust., vol. 13, pp. 194–199, 1991.
  21. P. Chevalier and F. Pipon, “New insights into optimal widely linear array receivers for the demodulation of BPSK, MSK, and GMSK signals corrupted by noncircular interferences - Application to SAIC,” IEEE Trans. Signal Process., vol. 54, no. 3, p. 870–883, 2006.
  22. Z. Li, R. Pu, Y. Xia, W. Pei, and D. P. Mandic, “A full second-order analysis of the widely linear MVDR beamformer for noncircular signals,” IEEE Trans. Signal Process., vol. 69, p. 4257–4268, 2021.
  23. C. Lameiro, I. Santamaría, and P. J. Schreier, “Rate region boundary of the SISO Z-interference channel with improper signaling,” IEEE Trans. Commun., vol. 65, no. 3, pp. 1022–1034, 2017.
  24. H. Yu, H. D. Tuan, T. Q. Duong, Y. Fang, and L. Hanzo, “Improper Gaussian signaling for integrated data and energy networking,” IEEE Trans. Commun., vol. 68, no. 6, p. 3922–3934, Jun. 2020.
  25. B. Picinbono and P. Chevalier, “Widely linear estimation with complex data,” IEEE Trans. Signal Process., vol. 43, no. 8, pp. 2030–2033, 1995.
  26. P. Chevalier, R. Chauvat, and J.-P. Delmas, “Widely linear FRESH receivers for cancellation of data-like rectilinear and quasi-rectilinear interference with frequency offsets,” Signal Process., vol. 188, p. 108171, Nov. 2021.
  27. H. Zhang, C. Qi, Q. Ma, and D. Xu, “Performance bounds of complex-valued nonlinear estimators in learning systems,” Neurocomputing, vol. 557, p. 126681, 2023.
  28. G. C. Lee, A. Weiss, A. Lancho, J. Tang, Y. Bu, Y. Polyanskiy, and G. W. Wornell, “Exploiting temporal structures of cyclostationary signals for data-driven single-channel source separation,” in Proc. IEEE 32nd Int. Workshop Mach. Learn. Signal Process. (MLSP), 2022, pp. 1–6.
  29. S. Meziani, A. Mesloub, A. Belouchrani, and K. Abed-Meraim, “Extended joint EVD algorithm for widely linear ARMA source separation,” IEEE Trans. Signal Process., vol. 71, pp. 3667–3678, 2023.
  30. Y. Liu, H. Gao, H. Cheng, Y. Xia, and W. Pei, “Outage performance analysis of improper Gaussian signaling for two-user downlink NOMA systems with imperfect successive interference cancellation,” Entropy, vol. 25, no. 8, p. 1172, Aug. 2023.
  31. W. H. Gerstacker, R. Schober, and A. Lampe, “Receivers with widely linear processing for frequency-selective channels,” IEEE Trans. Commun., vol. 51, no. 9, p. 1512–1523, 2003.
  32. C. Cheong Took, S. C. Douglas, and D. P. Mandic, “On approximate diagonalization of correlation matrices in widely linear signal processing,” IEEE Trans. Signal Process., vol. 60, no. 3, p. 1469–1473, Mar. 2012.
  33. E. Ollila, “On the circularity of a complex random variable,” IEEE Signal Process. Lett., vol. 15, p. 841–844, 2008.
  34. D. P. Mandic, S. Kanna, and S. C. Douglas, “Mean square analysis of the CLMS and ACLMS for non-circular signals: The approximate uncorrelating transform approach,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2015, p. 3531–3535.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets