Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative Adversarial Nets for Robust Scatter Estimation: A Proper Scoring Rule Perspective (1903.01944v1)

Published 5 Mar 2019 in cs.LG, math.ST, stat.ML, and stat.TH

Abstract: Robust scatter estimation is a fundamental task in statistics. The recent discovery on the connection between robust estimation and generative adversarial nets (GANs) by Gao et al. (2018) suggests that it is possible to compute depth-like robust estimators using similar techniques that optimize GANs. In this paper, we introduce a general learning via classification framework based on the notion of proper scoring rules. This framework allows us to understand both matrix depth function and various GANs through the lens of variational approximations of $f$-divergences induced by proper scoring rules. We then propose a new class of robust scatter estimators in this framework by carefully constructing discriminators with appropriate neural network structures. These estimators are proved to achieve the minimax rate of scatter estimation under Huber's contamination model. Our numerical results demonstrate its good performance under various settings against competitors in the literature.

Citations (21)

Summary

We haven't generated a summary for this paper yet.