Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tractable and Near-Optimal Adversarial Algorithms for Robust Estimation in Contaminated Gaussian Models (2112.12919v2)

Published 24 Dec 2021 in math.ST, stat.ML, and stat.TH

Abstract: Consider the problem of simultaneous estimation of location and variance matrix under Huber's contaminated Gaussian model. First, we study minimum $f$-divergence estimation at the population level, corresponding to a generative adversarial method with a nonparametric discriminator and establish conditions on $f$-divergences which lead to robust estimation, similarly to robustness of minimum distance estimation. More importantly, we develop tractable adversarial algorithms with simple spline discriminators, which can be implemented via nested optimization such that the discriminator parameters can be fully updated by maximizing a concave objective function given the current generator. The proposed methods are shown to achieve minimax optimal rates or near-optimal rates depending on the $f$-divergence and the penalty used. This is the first time such near-optimal error rates are established for adversarial algorithms with linear discriminators under Huber's contamination model. We present simulation studies to demonstrate advantages of the proposed methods over classic robust estimators, pairwise methods, and a generative adversarial method with neural network discriminators.

Summary

We haven't generated a summary for this paper yet.