Algorithms for Piecewise Constant Signal Approximations (1903.01320v3)
Abstract: We consider the problem of finding optimal piecewise constant approximations of one-dimensional signals. These approximations should consist of a specified number of segments (samples) and minimise the mean squared error to the original signal. We formalise this goal as a discrete nonconvex optimisation problem, for which we study two algorithms. First we reformulate a recent adaptive sampling method by Dar and Bruckstein in a compact and transparent way. This allows us to analyse its limitations when it comes to violations of its three key assumptions: signal smoothness, local linearity, and error balancing. As a remedy, we propose a direct optimisation approach which does not rely on any of these assumptions and employs a particle swarm optimisation algorithm. Our experiments show that for nonsmooth signals or low sample numbers, the direct optimisation approach offers substantial qualitative advantages over the Dar--Bruckstein method. As a more general contribution, we disprove the optimality of the principle of error balancing for optimising data in the l2 norm.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.