Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bouligand-Levenberg-Marquardt iteration for a non-smooth ill-posed inverse problem (1902.10596v2)

Published 27 Feb 2019 in math.NA, cs.NA, and math.OC

Abstract: In this paper, we consider a modified Levenberg--Marquardt method for solving an ill-posed inverse problem where the forward mapping is not G^ateaux differentiable. By relaxing the standard assumptions for the classical smooth setting, we derive asymptotic stability estimates that are then used to prove the convergence of the proposed method. This method can be applied to an inverse source problem for a non-smooth semilinear elliptic PDE where a Bouligand subdifferential can be used in place of the non-existing Fr\'echet derivative, and we show that the corresponding Bouligand-Levenberg-Marquardt iteration is an iterative regularization scheme. Numerical examples illustrate the advantage over the corresponding Bouligand-Landweber iteration.

Citations (13)

Summary

We haven't generated a summary for this paper yet.