Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Data-Driven Bouligand Landweber Method for Solving Non-smooth Inverse Problems (2402.04772v1)

Published 7 Feb 2024 in math.FA, cs.NA, math.CA, math.NA, and math.OC

Abstract: In this study, we present and analyze a novel variant of the stochastic gradient descent method, referred as Stochastic data-driven Bouligand Landweber iteration tailored for addressing the system of non-smooth ill-posed inverse problems. Our method incorporates the utilization of training data, using a bounded linear operator, which guides the iterative procedure. At each iteration step, the method randomly chooses one equation from the nonlinear system with data-driven term. When dealing with the precise or exact data, it has been established that mean square iteration error converges to zero. However, when confronted with the noisy data, we employ our approach in conjunction with a predefined stopping criterion, which we refer to as an \textit{a-priori} stopping rule. We provide a comprehensive theoretical foundation, establishing convergence and stability for this scheme within the realm of infinite-dimensional Hilbert spaces. These theoretical underpinnings are further bolstered by discussing an example that fulfills assumptions of the paper.

Citations (1)

Summary

We haven't generated a summary for this paper yet.