Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Étale inverse semigroupoids - the fundamentals (1902.09375v1)

Published 25 Feb 2019 in math.DS, math.CT, and math.OA

Abstract: In this article we will study semigroupoids, and more specifically inverse semigroupoids. These are a common generalization to both inverse semigroups and groupoids, and provide a natural language on which several types of dynamical structures may be described. Moreover, this theory allows us to precisely compare and simultaneously generalize aspects of both the theories of inverse semigroups and groupoids. We begin by comparing and settling the differences between two notions of semigroupoids which appear in the literature (one by Tilson and another by Exel). We specialize this study to inverse semigroupoids, and in particular an analogue of the Vagner-Preston Theorem is obtained. This representation theorem leads to natural notions of actions, and more generally $\land$-preactions and partial actions, of \'etale inverse semigroupoids, which generalize topological actions of inverse semigroups and continuous actions of \'etale groupoids. Many constructions which are commonplace in the theories of inverse semigroups and groupoids are also generalized, and their categorical properties made explicit. We finish this paper with a version of non-commutative Stone duality for ample inverse semigroupoids, which utilizes several of the aforementioned constructions.

Summary

We haven't generated a summary for this paper yet.