2000 character limit reached
Inverse semigroup actions on groupoids (1410.2051v5)
Published 8 Oct 2014 in math.OA
Abstract: We define inverse semigroup actions on topological groupoids by partial equivalences. From such actions, we construct saturated Fell bundles over inverse semigroups and non-Hausdorff \'etale groupoids. We interpret these as actions on C*-algebras by Hilbert bimodules and describe the section algebras of these Fell bundles. Our constructions give saturated Fell bundles over non-Hausdorff \'etale groupoids that model actions on locally Hausdorff spaces. We show that these Fell bundles are usually not Morita equivalent to an action by automorphisms. That is, the Packer-Raeburn Stabilisation Trick does not generalise to non-Hausdorff groupoids.