Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A two-level distributed algorithm for nonconvex constrained optimization (1902.07654v5)

Published 20 Feb 2019 in math.OC

Abstract: This paper aims to develop distributed algorithms for nonconvex optimization problems with complicated constraints associated with a network. The network can be a physical one, such as an electric power network, where the constraints are nonlinear power flow equations, or an abstract one that represents constraint couplings between decision variables of different agents. Despite the recent development of distributed algorithms for nonconvex programs, highly complicated constraints still pose a significant challenge in theory and practice. We first identify some difficulties with the existing algorithms based on the alternating direction method of multipliers (ADMM) for dealing with such problems. We then propose a reformulation that enables us to design a two-level algorithm, which embeds a specially structured three-block ADMM at the inner level in an augmented Lagrangian method (ALM) framework. Furthermore, we prove the global and local convergence as well as iteration complexity of this new scheme for general nonconvex constrained programs, and show that our analysis can be extended to handle more complicated multi-block inner-level problems. Finally, we demonstrate with computation that the new scheme provides convergent and parallelizable algorithms for various nonconvex applications, and is able to complement the performance of the state-of-the-art distributed algorithms in practice by achieving either faster convergence in optimality gap or in feasibility or both.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)