Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Liftable derived equivalences and objective categories (1902.06033v1)

Published 16 Feb 2019 in math.RA, math.AG, and math.RT

Abstract: We give two proofs to the following theorem and its generalization: if a finite dimensional algebra $A$ is derived equivalent to a smooth projective scheme, then any derived equivalence between $A$ and another algebra $B$ is standard, that is, isomorphic to the derived tensor functor by a two-sided tilting complex. The main ingredients of the proofs are as follows: (1) between the derived categories of two module categories, liftable functors coincide with standard functors; (2) any derived equivalence between a module category and an abelian category is uniquely factorized as the composition of a pseudo-identity and a liftable derived equivalence; (3) the derived category of coherent sheaves on a certain projective scheme is triangle-objective, that is, any triangle autoequivalence on it, which preserves the the isomorphism classes of complexes, is necessarily isomorphic to the identity functor.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.