Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimality of testing procedures for survival data (1902.00161v3)

Published 1 Feb 2019 in math.ST, stat.ME, and stat.TH

Abstract: Most statistical tests for treatment effects used in randomized clinical trials with survival outcomes are based on the proportional hazards assumption, which often fails in practice. Data from early exploratory studies may provide evidence of non-proportional hazards which can guide the choice of alternative tests in the design of practice-changing confirmatory trials. We study a test to detect treatment effects in a late-stage trial which accounts for the deviations from proportional hazards suggested by early-stage data. Conditional on early-stage data, among all tests which control the frequentist Type I error rate at a fixed $\alpha$ level, our testing procedure maximizes the Bayesian prediction of the finite-sample power. Hence, the proposed test provides a useful benchmark for other tests commonly used in presence of non-proportional hazards, for example weighted log-rank tests. We illustrate the approach in a simulations based on data from a published cancer immunotherapy phase III trial.

Summary

We haven't generated a summary for this paper yet.