Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 105 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Quantum operator entropies under unitary evolution (1901.08956v4)

Published 25 Jan 2019 in quant-ph

Abstract: For a quantum state undergoing unitary Schr\"odinger time evolution, the von Neumann entropy is constant. Yet the second law of thermodynamics, and our experience, show that entropy increases with time. Ingarden introduced the quantum operator entropy, which is the Shannon entropy of the probability distribution for the eigenvalues of a Hermitian operator. These entropies characterize the missing information about a particular observable inherent in the quantum state itself. The von Neumann entropy is the quantum operator entropy for the case when the operator is the density matrix. We examine pure state unitary evolution in a simple model system comprised of a set of highly-interconnected topologically disordered states and a time-independent Hamiltonian. An initially confined state is subject to free expansion into available states. The time development is completely reversible with no loss of quantum information and no course graining is applied. The positional entropy increases in time in a way that is consistent with both the classical statistical mechanical entropy and the second law.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)