Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Adapted Wasserstein Distances and Stability in Mathematical Finance (1901.07450v3)

Published 22 Jan 2019 in q-fin.MF and math.PR

Abstract: Assume that an agent models a financial asset through a measure Q with the goal to price / hedge some derivative or optimize some expected utility. Even if the model Q is chosen in the most skilful and sophisticated way, she is left with the possibility that Q does not provide an "exact" description of reality. This leads us to the following question: will the hedge still be somewhat meaningful for models in the proximity of Q? If we measure proximity with the usual Wasserstein distance (say), the answer is NO. Models which are similar w.r.t. Wasserstein distance may provide dramatically different information on which to base a hedging strategy. Remarkably, this can be overcome by considering a suitable "adapted" version of the Wasserstein distance which takes the temporal structure of pricing models into account. This adapted Wasserstein distance is most closely related to the nested distance as pioneered by Pflug and Pichler \cite{Pf09,PfPi12,PfPi14}. It allows us to establish Lipschitz properties of hedging strategies for semimartingale models in discrete and continuous time. Notably, these abstract results are sharp already for Brownian motion and European call options.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.