Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Flocking hydrodynamics with external potentials (1901.07099v1)

Published 21 Jan 2019 in math.AP

Abstract: We study the large-time behavior of hydrodynamic model which describes the collective behavior of continuum of agents, driven by pairwise alignment interactions with additional external potential forcing. The external force tends to compete with alignment which makes the large time behavior very different from the original Cucker-Smale (CS) alignment model, and far more interesting. Here we focus on uniformly convex potentials. In the particular case of \emph{quadratic} potentials, we are able to treat a large class of admissible interaction kernels, $\phi(r) \gtrsim (1+r2){-\beta}$ with thin' tails $\beta \leq 1$ --- thinner than the usualfat-tail' kernels encountered in CS flocking $\beta\leq\frac{1}{2}$: we discover unconditional flocking with exponential convergence of velocities \emph{and} positions towards a Dirac mass traveling as harmonic oscillator. For general convex potentials, we impose a stability condition, requiring large enough alignment kernel to avoid crowd scattering. We then prove, by hypocoercivity arguments, that both the velocities \emph{and} positions of smooth solution must flock. We also prove the existence of global smooth solutions for one and two space dimensions, subject to critical thresholds in initial configuration space. It is interesting to observe that global smoothness can be guaranteed for sub-critical initial data, independently of the apriori knowledge of large time flocking behavior.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube