Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Towards Testing of Deep Learning Systems with Training Set Reduction (1901.04169v1)

Published 14 Jan 2019 in stat.ML, cs.LG, cs.NE, and cs.SE

Abstract: Testing the implementation of deep learning systems and their training routines is crucial to maintain a reliable code base. Modern software development employs processes, such as Continuous Integration, in which changes to the software are frequently integrated and tested. However, testing the training routines requires running them and fully training a deep learning model can be resource-intensive, when using the full data set. Using only a subset of the training data can improve test run time, but can also reduce its effectiveness. We evaluate different ways for training set reduction and their ability to mimic the characteristics of model training with the original full data set. Our results underline the usefulness of training set reduction, especially in resource-constrained environments.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.