Papers
Topics
Authors
Recent
2000 character limit reached

On Relativistic $f$-Divergences

Published 8 Jan 2019 in cs.LG | (1901.02474v1)

Abstract: This paper provides a more rigorous look at Relativistic Generative Adversarial Networks (RGANs). We prove that the objective function of the discriminator is a statistical divergence for any concave function $f$ with minimal properties ($f(0)=0$, $f'(0) \neq 0$, $\sup_x f(x)>0$). We also devise a few variants of relativistic $f$-divergences. Wasserstein GAN was originally justified by the idea that the Wasserstein distance (WD) is most sensible because it is weak (i.e., it induces a weak topology). We show that the WD is weaker than $f$-divergences which are weaker than relativistic $f$-divergences. Given the good performance of RGANs, this suggests that WGAN does not performs well primarily because of the weak metric, but rather because of regularization and the use of a relativistic discriminator. We also take a closer look at estimators of relativistic $f$-divergences. We introduce the minimum-variance unbiased estimator (MVUE) for Relativistic paired GANs (RpGANs; originally called RGANs which could bring confusion) and show that it does not perform better. Furthermore, we show that the estimator of Relativistic average GANs (RaGANs) is only asymptotically unbiased, but that the finite-sample bias is small. Removing this bias does not improve performance.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.