Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Deep Beamformer for Variable Rate Ultrasound Imaging (1901.01706v1)

Published 7 Jan 2019 in cs.CV, cs.AI, cs.LG, and stat.ML

Abstract: Ultrasound (US) imaging is based on the time-reversal principle, in which individual channel RF measurements are back-propagated and accumulated to form an image after applying specific delays. While this time reversal is usually implemented as a delay-and-sum (DAS) beamformer, the image quality quickly degrades as the number of measurement channels decreases. To address this problem, various types of adaptive beamforming techniques have been proposed using predefined models of the signals. However, the performance of these adaptive beamforming approaches degrade when the underlying model is not sufficiently accurate. Here, we demonstrate for the first time that a single universal deep beamformer trained using a purely data-driven way can generate significantly improved images over widely varying aperture and channel subsampling patterns. In particular, we design an end-to-end deep learning framework that can directly process sub-sampled RF data acquired at different subsampling rate and detector configuration to generate high quality ultrasound images using a single beamformer. Experimental results using B-mode focused ultrasound confirm the efficacy of the proposed methods.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com