Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive and Compressive Beamforming Using Deep Learning for Medical Ultrasound (1907.10257v3)

Published 24 Jul 2019 in eess.IV, cs.CV, and cs.LG

Abstract: In ultrasound (US) imaging, various types of adaptive beamforming techniques have been investigated to improve the resolution and contrast-to-noise ratio of the delay and sum (DAS) beamformers. Unfortunately, the performance of these adaptive beamforming approaches degrade when the underlying model is not sufficiently accurate and the number of channels decreases. To address this problem, here we propose a deep learning-based beamformer to generate significantly improved images over widely varying measurement conditions and channel subsampling patterns. In particular, our deep neural network is designed to directly process full or sub-sampled radio-frequency (RF) data acquired at various subsampling rates and detector configurations so that it can generate high quality ultrasound images using a single beamformer. The origin of such input-dependent adaptivity is also theoretically analyzed. Experimental results using B-mode focused ultrasound confirm the efficacy of the proposed methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shujaat Khan (36 papers)
  2. Jaeyoung Huh (15 papers)
  3. Jong Chul Ye (210 papers)
Citations (84)

Summary

We haven't generated a summary for this paper yet.