Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Drug cell line interaction prediction (1812.11178v1)

Published 28 Dec 2018 in q-bio.QM, cs.LG, and stat.ML

Abstract: Understanding the phenotypic drug response on cancer cell lines plays a vital rule in anti-cancer drug discovery and re-purposing. The Genomics of Drug Sensitivity in Cancer (GDSC) database provides open data for researchers in phenotypic screening to test their models and methods. Previously, most research in these areas starts from the fingerprints or features of drugs, instead of their structures. In this paper, we introduce a model for phenotypic screening, which is called twin Convolutional Neural Network for drugs in SMILES format (tCNNS). tCNNS is comprised of CNN input channels for drugs in SMILES format and cancer cell lines respectively. Our model achieves $0.84$ for the coefficient of determinant($R2$) and $0.92$ for Pearson correlation($R_p$), which are significantly better than previous works\cite{ammad2014integrative,haider2015copula,menden2013machine}. Besides these statistical metrics, tCNNS also provides some insights into phenotypic screening.

Citations (109)

Summary

We haven't generated a summary for this paper yet.