Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Degree Bounded Bottleneck Spanning Trees in Three Dimensions (1812.11177v3)

Published 28 Dec 2018 in cs.CG and math.CO

Abstract: The geometric $\delta$-minimum spanning tree problem ($\delta$-MST) is the problem of finding a minimum spanning tree for a set of points in a normed vector space, such that no vertex in the tree has a degree which exceeds $\delta$, and the sum of the lengths of the edges in the tree is minimum. The similarly defined geometric $\delta$-minimum bottleneck spanning tree problem ($\delta$-MBST), is the problem of finding a degree bounded spanning tree such that the length of the longest edge is minimum. For point sets that lie in the Euclidean plane, both of these problems have been shown to be NP-hard for certain specific values of $\delta$. In this paper, we investigate the $\delta$-MBST problem in $3$-dimensional Euclidean space and $3$-dimensional rectilinear space. We show that the problems are NP-hard for certain values of $\delta$, and we provide inapproximability results for these cases. We also describe new approximation algorithms for solving these $3$-dimensional variants, and then analyse their worst-case performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Patrick J. Andersen (2 papers)
  2. Charl J. Ras (4 papers)
Citations (2)