Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards a constructive formalization of Perfect Graph Theorems (1812.11108v1)

Published 28 Dec 2018 in cs.LO and cs.DM

Abstract: Interaction between clique number $\omega(G) $ and chromatic number $\chi(G) $ of a graph is a well studied topic in graph theory. Perfect Graph Theorems are probably the most important results in this direction. Graph $G$ is called \emph{perfect} if $\chi(H)=\omega(H)$ for every induced subgraph $H$ of $G$. The Strong Perfect Graph Theorem (SPGT) states that a graph is perfect if and only if it does not contain an odd hole (or an odd anti-hole) as its induced subgraph. The Weak Perfect Graph Theorem (WPGT) states that a graph is perfect if and only if its complement is perfect. In this paper, we present a formal framework for verifying these results. We model finite simple graphs in the constructive type theory of Coq Proof Assistant without adding any axiom to it. Finally, we use this framework to present a constructive proof of the Lov\'{a}sz Replication Lemma, which is the central idea in the proof of Weak Perfect Graph Theorem.

Citations (2)

Summary

We haven't generated a summary for this paper yet.