Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Constructive Formalization of the Weak Perfect Graph Theorem (1912.02211v1)

Published 4 Dec 2019 in cs.LO, cs.DM, and cs.PL

Abstract: The Perfect Graph Theorems are important results in graph theory describing the relationship between clique number $\omega(G) $ and chromatic number $\chi(G) $ of a graph $G$. A graph $G$ is called \emph{perfect} if $\chi(H)=\omega(H)$ for every induced subgraph $H$ of $G$. The Strong Perfect Graph Theorem (SPGT) states that a graph is perfect if and only if it does not contain an odd hole (or an odd anti-hole) as its induced subgraph. The Weak Perfect Graph Theorem (WPGT) states that a graph is perfect if and only if its complement is perfect. In this paper, we present a formal framework for working with finite simple graphs. We model finite simple graphs in the Coq Proof Assistant by representing its vertices as a finite set over a countably infinite domain. We argue that this approach provides a formal framework in which it is convenient to work with different types of graph constructions (or expansions) involved in the proof of the Lov\'{a}sz Replication Lemma (LRL), which is also the key result used in the proof of Weak Perfect Graph Theorem. Finally, we use this setting to develop a constructive formalization of the Weak Perfect Graph Theorem.

Citations (3)

Summary

We haven't generated a summary for this paper yet.