Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Clickbait Challenge 2017: Towards a Regression Model for Clickbait Strength (1812.10847v1)

Published 27 Dec 2018 in cs.CL and cs.IR

Abstract: Clickbait has grown to become a nuisance to social media users and social media operators alike. Malicious content publishers misuse social media to manipulate as many users as possible to visit their websites using clickbait messages. Machine learning technology may help to handle this problem, giving rise to automatic clickbait detection. To accelerate progress in this direction, we organized the Clickbait Challenge 2017, a shared task inviting the submission of clickbait detectors for a comparative evaluation. A total of 13 detectors have been submitted, achieving significant improvements over the previous state of the art in terms of detection performance. Also, many of the submitted approaches have been published open source, rendering them reproducible, and a good starting point for newcomers. While the 2017 challenge has passed, we maintain the evaluation system and answer to new registrations in support of the ongoing research on better clickbait detectors.

Citations (53)

Summary

We haven't generated a summary for this paper yet.