Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Nonlinear-in-spin effects in effective-one-body waveform models of spin-aligned, inspiralling, neutron star binaries (1812.07923v1)

Published 19 Dec 2018 in gr-qc

Abstract: Spinning neutron stars acquire a quadrupole moment due to their own rotation. This quadratic-in-spin, self-spin effect depends on the equation of state (EOS) and affects the orbital motion and rate of inspiral of neutron star binaries. We incorporate the EOS-dependent self-spin (or monopole-quadrupole) terms in the spin-aligned effective-one-body (EOB) waveform model TEOBResumS at next-to-next-to-leading (NNLO) order, together with other (bilinear, cubic and quartic) nonlinear-in-spin effects (at leading order, LO). The structure of the Hamiltonian of TEOBResumS is such that it already incorporates, in the binary black hole case, the recently computed quartic-in-spin LO term. Using the gauge-invariant characterization of the phasing provided by the function $Q_\omega=\omega2/\dot{\omega}$ of $\omega=2\pi f$ , where $f$ is the gravitational wave frequency, we study the EOS dependence of the self-spin effects and show that: (i) the next-to-leading order (NLO) and NNLO monopole-quadrupole corrections yield increasingly phase-accelerating effects compared to the corresponding LO contribution; (ii) the standard TaylorF2 post-Newtonian (PN) treatment of NLO (3PN) EOS-dependent self-spin effects makes their action stronger than the corresponding EOB description; (iii) the addition to the standard 3PN TaylorF2 post-Newtonian phasing description of self-spin tail effects at LO allows one to reconcile the self-spin part of the TaylorF2 PN phasing with the corresponding TEOBResumS one up to dimensionless frequencies $M\omega\simeq 0.04-0.06$. By generating the inspiral dynamics using the post-adiabatic approximation, incorporated in a new implementation of TEOBResumS, one finds that the computational time needed to obtain a typical waveform (including all multipoles up to $\ell=8$) from 10 Hz is of the order of 0.4 sec.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.