Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A parallel shared-memory implementation of a high-order accurate solution technique for variable coefficient Helmholtz problems (1812.07167v2)

Published 18 Dec 2018 in math.NA

Abstract: The recently developed Hierarchical Poincar\'e-Steklov (HPS) method is a high-order discretization technique that comes with a direct solver. Results from previous papers demonstrate the method's ability to solve Helmholtz problems to high accuracy without the so-called pollution effect. While the asymptotic scaling of the direct solver's computational cost is the same as the nested dissection method, serial implementations of the solution technique are not practical for large scale numerical simulations. This manuscript presents the first parallel implementation of the HPS method. Specifically, we introduce an approach for a shared memory implementation of the solution technique utilizing parallel linear algebra. This approach is the foundation for future large scale simulations on supercomputers and clusters with large memory nodes. Performance results on a desktop computer (resembling a large memory node) are presented.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.