Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fractional elliptic problem in exterior domains with nonlocal Neumann boundary condition (1812.04881v3)

Published 12 Dec 2018 in math.AP

Abstract: In this paper we consider the existence of solution for the following class of fractional elliptic problem \begin{equation}\label{00} \left{\begin{aligned} (-\Delta)su + u &= Q(x) |u|{p-1}u\;\;\mbox{in}\;\;\RN \setminus \Omega\ \mathcal{N}su(x) &= 0\;\;\mbox{in}\;\;{\Omega}, \end{aligned} \right. \end{equation} where $s\in (0,1)$, $N> 2s$, $\Omega\subset \RN$ is a bounded set with smooth boundary, $(-\Delta)s$ denotes the fractional Laplacian operator and $\mathcal{N}_s$ is the nonlocal operator that describes the Neumann boundary condition, which is given by $$ \mathcal{N}_su(x) = C{N,s} \int_{\RN \setminus \Omega} \frac{u(x) - u(y)}{|x-y|{N+2s}}dy,\;\;x\in {\Omega}. $$

Summary

We haven't generated a summary for this paper yet.