Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Elliptic problem in an exterior domain driven by a singularity with a nonlocal Neumann condition (2012.04449v1)

Published 8 Dec 2020 in math.AP

Abstract: We prove the existence of ground state solution to the following problem. \begin{align*} (-\Delta){s}u+u&=\lambda|u|{-\gamma-1}u+P(x)|u|{p-1}u,~\text{in}~\mathbb{R}N\setminus\Omega\ N_su(x)&=0,~\text{in}~\Omega \end{align*} where $N\geq2$, $\lambda>0$, $0<s,\gamma<1$, $p\in(1,2_s*-1)$ with $2_s*=\frac{2N}{N-2s}$. % $0<s-=\underset{{(x,y)\in\Omega\times\Omega}}{\inf}{s(x,y)}\leq s(x,y)\leq s+=\underset{{(x,y)\in\Omega\times\Omega}}{\sup}{s(x,y)}<1$, $0<\gamma-=\underset{{x\in\Omega}}{\inf}{\gamma(x)}\leq \gamma(x)\leq \gamma+=\underset{{x\in\Omega}}{\sup}{\gamma(x)}<1$, $1-\gamma-<1<p-=\underset{x\in\Omega}{\inf}{p(x)}\leq p(x)\leq p+=\underset{x\in\Omega}{\sup}{p(x)}<2_{s-}=\underset{{x\in\Omega}}{\inf}{2_s^(x)}$ with $2_s*(x)=\frac{2N}{N-2\tilde{s}(s)}$ where $\tilde{s}(x)=s(x,x)$. Moreover, $\Omega\subset\mathbb{R}N$ is a smooth bounded domain, $(-\Delta)s$ denotes the $s$-fractional Laplacian and finally $N_s$ denotes the nonlocal operator that describes the Neumann boundary condition which is given as follows. \begin{align*} N_{s}u(x)&=C_{N,s}\int_{\mathbb{R}N\setminus\Omega}\frac{u(x)-u(y)}{|x-y|{N+2s}}dy,~x\in\Omega. \end{align*} We further establish the existence of infinitely many bounded solutions to the problem.

Summary

We haven't generated a summary for this paper yet.