Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Contrastive Training for Models of Information Cascades (1812.04677v1)

Published 11 Dec 2018 in cs.SI, cs.LG, and stat.ML

Abstract: This paper proposes a model of information cascades as directed spanning trees (DSTs) over observed documents. In addition, we propose a contrastive training procedure that exploits partial temporal ordering of node infections in lieu of labeled training links. This combination of model and unsupervised training makes it possible to improve on models that use infection times alone and to exploit arbitrary features of the nodes and of the text content of messages in information cascades. With only basic node and time lag features similar to previous models, the DST model achieves performance with unsupervised training comparable to strong baselines on a blog network inference task. Unsupervised training with additional content features achieves significantly better results, reaching half the accuracy of a fully supervised model.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.