Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Besov spaces and random walks on a hyperbolic group: boundary traces and reflecting extensions of Dirichlet forms (1812.01816v6)

Published 5 Dec 2018 in math.PR

Abstract: We show the existence of a trace process at infinity for random walks on hyperbolic groups of conformal dimension < 2 and relate it to the existence of a reflecting random walk. To do so, we employ the theory of Dirichlet forms which connects the theory of symmetric Markov processes to functional analytic perspectives. We introduce a family of Besov spaces associated to random walks and prove that they are isomorphic to some of the Besov spaces constructed from the co-homology of the group studied in Bourdon-Pajot (2003). We also study the regularity of harmonic measures of random walks on hyperbolic groups using the potential theory associated to Dirichlet forms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.