Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to match transient sound events using attentional similarity for few-shot sound recognition (1812.01269v2)

Published 4 Dec 2018 in cs.SD and eess.AS

Abstract: In this paper, we introduce a novel attentional similarity module for the problem of few-shot sound recognition. Given a few examples of an unseen sound event, a classifier must be quickly adapted to recognize the new sound event without much fine-tuning. The proposed attentional similarity module can be plugged into any metric-based learning method for few-shot learning, allowing the resulting model to especially match related short sound events. Extensive experiments on two datasets shows that the proposed module consistently improves the performance of five different metric-based learning methods for few-shot sound recognition. The relative improvement ranges from +4.1% to +7.7% for 5-shot 5-way accuracy for the ESC-50 dataset, and from +2.1% to +6.5% for noiseESC-50. Qualitative results demonstrate that our method contributes in particular to the recognition of transient sound events.

Citations (57)

Summary

We haven't generated a summary for this paper yet.