Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Metric Learning with Background Noise Class for Few-shot Detection of Rare Sound Events (1910.13724v2)

Published 30 Oct 2019 in eess.AS, cs.LG, and cs.SD

Abstract: Few-shot learning systems for sound event recognition have gained interests since they require only a few examples to adapt to new target classes without fine-tuning. However, such systems have only been applied to chunks of sounds for classification or verification. In this paper, we aim to achieve few-shot detection of rare sound events, from query sequence that contain not only the target events but also the other events and background noise. Therefore, it is required to prevent false positive reactions to both the other events and background noise. We propose metric learning with background noise class for the few-shot detection. The contribution is to present the explicit inclusion of background noise as an independent class, a suitable loss function that emphasizes this additional class, and a corresponding sampling strategy that assists training. It provides a feature space where the event classes and the background noise class are sufficiently separated. Evaluations on few-shot detection tasks, using DCASE 2017 task2 and ESC-50, show that our proposed method outperforms metric learning without considering the background noise class. The few-shot detection performance is also comparable to that of the DCASE 2017 task2 baseline system, which requires huge amount of annotated audio data.

Citations (23)

Summary

We haven't generated a summary for this paper yet.