Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hypercomplex method for solving linear PDEs with constant coefficients (1811.10701v1)

Published 21 Nov 2018 in math.CV

Abstract: In this paper, we propose a procedure for constructing an infinite number of families of solutions of given linear differential equations with partial derivatives with constant coefficients. We use monogenic functions that are defined on some sequences of commutative associative algebras over the field of complex numbers. To achieve this goal, we first study the solutions of the so-called characteristic equation on a given sequence of algebras. Further, we investigate monogenic functions on the sequence of algebras and study their relation with solutions of partial deferential equations. The proposed method is used to construct solutions of some equations of mathematical physics. In particular, for the three-dimensional Laplace equation and the wave equation, for the equation of transverse oscillations of the elastic rod and the conjugate equation, a generalized biharmonic equation and the two-dimensional Helmholtz equation. We note that this method yields all analytic solutions of the two-dimensional Laplace equation and the two-dimensional biharmonic equation (Goursat formula).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.