Hypercomplex method for solving linear PDEs with constant coefficients (1811.10701v1)
Abstract: In this paper, we propose a procedure for constructing an infinite number of families of solutions of given linear differential equations with partial derivatives with constant coefficients. We use monogenic functions that are defined on some sequences of commutative associative algebras over the field of complex numbers. To achieve this goal, we first study the solutions of the so-called characteristic equation on a given sequence of algebras. Further, we investigate monogenic functions on the sequence of algebras and study their relation with solutions of partial deferential equations. The proposed method is used to construct solutions of some equations of mathematical physics. In particular, for the three-dimensional Laplace equation and the wave equation, for the equation of transverse oscillations of the elastic rod and the conjugate equation, a generalized biharmonic equation and the two-dimensional Helmholtz equation. We note that this method yields all analytic solutions of the two-dimensional Laplace equation and the two-dimensional biharmonic equation (Goursat formula).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.