Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sound Approximation of Programs with Elementary Functions (1811.10274v1)

Published 26 Nov 2018 in cs.NA, cs.MS, and cs.PL

Abstract: Elementary function calls are a common feature in numerical programs. While their implementions in library functions are highly optimized, their computation is nonetheless very expensive compared to plain arithmetic. Full accuracy is, however, not always needed. Unlike arithmetic, where the performance difference between for example single and double precision floating-point arithmetic is relatively small, elementary function calls provide a much richer tradeoff space between accuracy and efficiency. Navigating this space is challenging. First, generating approximations of elementary function calls which are guaranteed to satisfy accuracy error bounds is highly nontrivial. Second, the performance of such approximations generally depends on several parameters which are unintuitive to choose manually, especially for non-experts. We present a fully automated approach and tool which approximates elementary function calls inside small programs while guaranteeing overall user provided error bounds. Our tool leverages existing techniques for roundoff error computation and approximation of individual elementary function calls, and provides automated selection of many parameters. Our experiments show that significant efficiency improvements are possible in exchange for reduced, but guaranteed, accuracy.

Citations (13)

Summary

We haven't generated a summary for this paper yet.