Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dandelion: Certified Approximations of Elementary Functions (2202.05472v2)

Published 11 Feb 2022 in cs.PL

Abstract: Elementary function operations such as sin and exp cannot in general be computed exactly on today's digital computers, and thus have to be approximated. The standard approximations in library functions typically provide only a limited set of precisions, and are too inefficient for many applications. Polynomial approximations that are customized to a limited input domain and output accuracy can provide superior performance. In fact, the Remez algorithm computes the best possible approximation for a given polynomial degree, but has so far not been formally verified. This paper presents Dandelion, an automated certificate checker for polynomial approximations of elementary functions computed with Remez-like algorithms that is fully verified in the HOL4 theorem prover. Dandelion checks whether the difference between a polynomial approximation and its target reference elementary function remains below a given error bound for all inputs in a given constraint. By extracting a verified binary with the CakeML compiler, Dandelion can validate certificates within a reasonable time, fully automating previous manually verified approximations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.