Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Reduction-based exact solution of prize-collecting Steiner tree problems (1811.09068v1)

Published 22 Nov 2018 in math.OC

Abstract: The prize-collecting Steiner tree problem PCSTP is a well-known generalization of the classical Steiner tree problem in graphs, with a large number of practical applications. It attracted particular interest during the latest (11th) DIMACS Challenge and since then a number of PCSTP solvers have been introduced in the literature, some of which drastically improved on the best results achieved at the Challenge. The following article aims to further advance the state of the art. It introduces new techniques and algorithms for PCSTP, involving various forms of reductions of PCSTP instances to equivalent problems---which for example allows to decrease the problem size or to obtain a better IP formulation. Several of the new techniques and algorithms provably dominate previous approaches. Further theoretical properties of the new components, such as their complexity, are discussed, and their profound interaction is described. Finally, the new developments also translate into a strong computational performance: the resulting exact solver outperforms all previous approaches---both in terms of run-time and solvability---and can solve formerly intractable benchmark instances from the 11th DIMACS Challenge to optimality.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.