Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

A Variational Dirichlet Framework for Out-of-Distribution Detection (1811.07308v4)

Published 18 Nov 2018 in cs.LG, cs.AI, cs.CV, and stat.ML

Abstract: With the recently rapid development in deep learning, deep neural networks have been widely adopted in many real-life applications. However, deep neural networks are also known to have very little control over its uncertainty for unseen examples, which potentially causes very harmful and annoying consequences in practical scenarios. In this paper, we are particularly interested in designing a higher-order uncertainty metric for deep neural networks and investigate its effectiveness under the out-of-distribution detection task proposed by~\cite{hendrycks2016baseline}. Our method first assumes there exists an underlying higher-order distribution $\mathbb{P}(z)$, which controls label-wise categorical distribution $\mathbb{P}(y)$ over classes on the K-dimension simplex, and then approximate such higher-order distribution via parameterized posterior function $p_{\theta}(z|x)$ under variational inference framework, finally we use the entropy of learned posterior distribution $p_{\theta}(z|x)$ as uncertainty measure to detect out-of-distribution examples. Further, we propose an auxiliary objective function to discriminate against synthesized adversarial examples to further increase the robustness of the proposed uncertainty measure. Through comprehensive experiments on various datasets, our proposed framework is demonstrated to consistently outperform competing algorithms.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube