Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Detection of Sparse Positive Dependence (1811.07105v2)

Published 17 Nov 2018 in math.ST and stat.TH

Abstract: In a bivariate setting, we consider the problem of detecting a sparse contamination or mixture component, where the effect manifests itself as a positive dependence between the variables, which are otherwise independent in the main component. We first look at this problem in the context of a normal mixture model. In essence, the situation reduces to a univariate setting where the effect is a decrease in variance. In particular, a higher criticism test based on the pairwise differences is shown to achieve the detection boundary defined by the (oracle) likelihood ratio test. We then turn to a Gaussian copula model where the marginal distributions are unknown. Standard invariance considerations lead us to consider rank tests. In fact, a higher criticism test based on the pairwise rank differences achieves the detection boundary in the normal mixture model, although not in the very sparse regime. We do not know of any rank test that has any power in that regime.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.