Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Batch Self Organizing maps for distributional data using adaptive distances (1811.06980v3)

Published 17 Nov 2018 in stat.OT

Abstract: The paper deals with a Batch Self Organizing Map algorithm (DBSOM) for data described by distributional-valued variables. This kind of variables is characterized to take as values one-dimensional probability or frequency distributions on a numeric support. The objective function optimized in the algorithm depends on the choice of the distance measure. According to the nature of the date, the $L_2$ Wasserstein distance is proposed as one of the most suitable metrics to compare distributions. It is widely used in several contexts of analysis of distributional data. Conventional batch SOM algorithms consider that all variables are equally important for the training of the SOM. However, it is well known that some variables are less relevant than others for this task. In order to take into account the different contribution of the variables we propose an adaptive version of the DBSOM algorithm that tackles this problem with an additional step: a relevance weight is automatically learned for each distributional-valued variable. Moreover, since the $L_2$ Wasserstein distance allows a decomposition into two components: one related to the means and one related to the size and shape of the distributions, also relevance weights are automatically learned for each of the measurement components to emphasize the importance of the different estimated parameters of the distributions. Examples of real and synthetic datasets of distributional data illustrate the usefulness of the proposed DBSOM algorithms.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.