Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effects of Lombard Reflex on the Performance of Deep-Learning-Based Audio-Visual Speech Enhancement Systems (1811.06250v1)

Published 15 Nov 2018 in eess.AS, cs.LG, cs.SD, and eess.IV

Abstract: Humans tend to change their way of speaking when they are immersed in a noisy environment, a reflex known as Lombard effect. Current speech enhancement systems based on deep learning do not usually take into account this change in the speaking style, because they are trained with neutral (non-Lombard) speech utterances recorded under quiet conditions to which noise is artificially added. In this paper, we investigate the effects that the Lombard reflex has on the performance of audio-visual speech enhancement systems based on deep learning. The results show that a gap in the performance of as much as approximately 5 dB between the systems trained on neutral speech and the ones trained on Lombard speech exists. This indicates the benefit of taking into account the mismatch between neutral and Lombard speech in the design of audio-visual speech enhancement systems.

Citations (7)

Summary

We haven't generated a summary for this paper yet.