Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Newton Methods for Convolutional Neural Networks (1811.06100v1)

Published 14 Nov 2018 in stat.ML and cs.LG

Abstract: Deep learning involves a difficult non-convex optimization problem, which is often solved by stochastic gradient (SG) methods. While SG is usually effective, it may not be robust in some situations. Recently, Newton methods have been investigated as an alternative optimization technique, but nearly all existing studies consider only fully-connected feedforward neural networks. They do not investigate other types of networks such as Convolutional Neural Networks (CNN), which are more commonly used in deep-learning applications. One reason is that Newton methods for CNN involve complicated operations, and so far no works have conducted a thorough investigation. In this work, we give details of all building blocks including function, gradient, and Jacobian evaluation, and Gauss-Newton matrix-vector products. These basic components are very important because with them further developments of Newton methods for CNN become possible. We show that an efficient MATLAB implementation can be done in just several hundred lines of code and demonstrate that the Newton method gives competitive test accuracy.

Citations (9)

Summary

We haven't generated a summary for this paper yet.