Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Subsampled Gauss-Newton and Natural Gradient Methods for Training Neural Networks (1906.02353v1)

Published 5 Jun 2019 in cs.LG and stat.ML

Abstract: We present practical Levenberg-Marquardt variants of Gauss-Newton and natural gradient methods for solving non-convex optimization problems that arise in training deep neural networks involving enormous numbers of variables and huge data sets. Our methods use subsampled Gauss-Newton or Fisher information matrices and either subsampled gradient estimates (fully stochastic) or full gradients (semi-stochastic), which, in the latter case, we prove convergent to a stationary point. By using the Sherman-Morrison-Woodbury formula with automatic differentiation (backpropagation) we show how our methods can be implemented to perform efficiently. Finally, numerical results are presented to demonstrate the effectiveness of our proposed methods.

Citations (35)

Summary

We haven't generated a summary for this paper yet.