Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A probabilistic Takens theorem (1811.05959v3)

Published 14 Nov 2018 in math.DS, math-ph, and math.MP

Abstract: Let $X \subset \mathbb{R}N$ be a Borel set, $\mu$ a Borel probability measure on $X$ and $T:X \to X$ a Lipschitz and injective map. Fix $k \in \mathbb{N}$ greater than the (Hausdorff) dimension of $X$ and assume that the set of $p$-periodic points has dimension smaller than $p$ for $p=1, \ldots, k-1$. We prove that for a typical polynomial perturbation $\tilde{h}$ of a given Lipschitz map $h : X \to \mathbb{R}$, the $k$-delay coordinate map $x \mapsto (\tilde{h}(x), \tilde{h}(Tx), \ldots, \tilde{h}(T{k-1}x))$ is injective on a set of full measure $\mu$. This is a probabilistic version of the Takens delay embedding theorem as proven by Sauer, Yorke and Casdagli. We also provide a non-dynamical probabilistic embedding theorem of similar type, which strengthens a previous result by Alberti, B\"{o}lcskei, De Lellis, Koliander and Riegler. In both cases, the key improvements compared to the non-probabilistic counterparts are the reduction of the number of required measurements from $2\dim X$ to $\dim X$ and using Hausdorff dimension instead of the box-counting one. We present examples showing how the use of the Hausdorff dimension improves the previously obtained results.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube