A combinatorial classification of 2-regular simple modules for Nakayama algebras (1811.05846v2)
Abstract: Enomoto showed for finite dimensional algebras that the classification of exact structures on the category of finitely generated projective modules can be reduced to the classification of 2-regular simple modules. In this article, we give a combinatorial classification of 2-regular simple modules for Nakayama algebras and we use this classification to answer several natural questions such as when there is a unique exact structure on the category of finitely generated projective modules for Nakayama algebras. We also classify 1-regular simple modules, quasi-hereditary Nakayama algebras and Nakayama algebras of global dimension at most two. It turns out that most classes are enumerated by well-known combinatorial sequences, such as Fibonacci, Riordan and Narayana numbers. We first obtain interpretations in terms of the Auslander-Reiten quiver of the algebra using homological algebra, and then apply suitable bijections to relate these to combinatorial statistics on Dyck paths.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.