Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

On a free boundary problem for finitely extensible bead-spring chain molecules in dilute polymers (1811.05684v1)

Published 14 Nov 2018 in math.AP

Abstract: We investigate the global existence of weak solutions to a free boundary problem governing the evolution of finitely extensible bead-spring chains in dilute polymers. We construct weak solutions of the two-phase model by performing the asymptotic limit as the adiabatic exponent $\gamma$ goes to $\infty$ for a macroscopic model which arises from the kinetic theory of dilute solutions of nonhomogeneous polymeric liquids. In this context the polymeric molecules are idealized as bead-spring chains with finitely extensible nonlinear elastic (FENE) type spring potentials. This class of models involves the unsteady, compressible, isentropic, isothermal Navier-Stokes system in a bounded domain $\Omega$ in $\mathbb{R}d,$ $d=2, 3$ coupled with a Fokker-Planck-Smoluchowski-type diffusion equation (cf. Barrett and S\"{u}li [4], [5], [9]). The convergence of these solutions, up to a subsequence, to the free-boundary problem is established using weak convergence methods, compactness arguments which rely on the monotonicity properties of certain quantities in the spirit of [19].

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.