Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
GPT OSS 120B 391 tok/s Pro
Kimi K2 159 tok/s Pro
2000 character limit reached

Analysis of Gaussian Spatial Models with Covariate Measurement Error (1811.05648v2)

Published 14 Nov 2018 in stat.AP

Abstract: Uncertainty is an inherent characteristic of biological and geospatial data which is almost made by measurement error in the observed values of the quantity of interest. Ignoring measurement error can lead to biased estimates and inflated variances and so an inappropriate inference. In this paper, the Gaussian spatial model is fitted based on covariate measurement error. For this purpose, we adopt the Bayesian approach and utilize the Markov chain Monte Carlo algorithms and data augmentations to carry out calculations. The methodology is illustrated using simulated data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)