Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Denoising Distant Supervision for Relation Extraction via Instance-Level Adversarial Training (1805.10959v1)

Published 28 May 2018 in cs.CL

Abstract: Existing neural relation extraction (NRE) models rely on distant supervision and suffer from wrong labeling problems. In this paper, we propose a novel adversarial training mechanism over instances for relation extraction to alleviate the noise issue. As compared with previous denoising methods, our proposed method can better discriminate those informative instances from noisy ones. Our method is also efficient and flexible to be applied to various NRE architectures. As shown in the experiments on a large-scale benchmark dataset in relation extraction, our denoising method can effectively filter out noisy instances and achieve significant improvements as compared with the state-of-the-art models.

Citations (16)

Summary

We haven't generated a summary for this paper yet.